SYSTEM OF FITS AND TOLERANCES

The standard reference temperature is 20 C for industrial measurements and, consequently, for dimensions defined by the system.

Due to the inevitable inaccuracy of manufacturing methods, a part cannot be made precisely to a given dimension, the difference between maximum and minimum limits of size is the <u>tolerance.</u>

>When two parts are to be assembled, the relation resulting from the difference between their sizes before assembly is called a <u>fit.</u>

Tolerance

- How to decide tolerance?
 - Functional requirements of mating parts
 - Cost of production
 - Available manufacturing process
 - Choose as coarse tolerance as possible without compromising functional requirements
 - Proper balance between cost and quality of parts

HOLE

SHAFT

Max Hole size – Basic Size = Upper Deviation shaft size – Basic Size = Upper Deviation Min Hole size – Basic Size = Lower Deviation shaft size – Basic Size = Lower Deviation

Maximum shaft dimension < Minimum hole dimension

FIT - condition of looseness or tightness between two mating parts being assembled together

INTERFERANCE FIT

Maximum Hole size < Minimum Shaft size

TRANSITION FIT

Obtained by overlapping of tolerance zones of shaft and holeDoes not guarantee neither clearance nor interference fit

To obtain different types of fits, it is general practice to vary tolerance zone of one of the mating parts

HOLE BASED SYSTEM-Size of hole is kept constant, shaft size is varied to get different fits.

SHAFT BASED SYSTEM-

Size of shaft is kept constant, hole size is varied to get different fits.

A fit is indicated by the basic size common to both components, followed by symbol corresponding to each component, the hole being quoted first.

E.g. 45 H8/g7

Representation of Tolerance 1) Letter Symbol Basic Size 45 E8/e7

One can have different possible combinations; eg. 45H6g7, 45H8r6, 45E5p7

E.S. – upper deviation

E.I. – lower deviation

H : lower deviation of hole is zero

h : upper deviation of shaft is zero

Representation of Tolerance 2) Number or Grade IT01, IT0, IT1,....IT16

Tolerance Grade defines range of dimensions (dimensional variation)

There are manufacturing constraints on tolerance grade chosen

Tolerance grade	Manufacturing process and applications	Machine required
IT01, IT0 IT1 to IT5	Super finishing process, such as lapping, diamond boring etc. Use: Gauges	Super finishing machines
IT6	Grinding	Grinding machines
IT7	Precision turning, broaching, honing	Boring machine, honing machine
IT8	Turning, boring and reaming	Lathes, capstan and automats
IT9	Boring	Boring machines
IT10	Milling, slotting, planing, rolling and extrusion	Milling machine, slotting machine, planing machine and extruders
IT11	Drilling, rough turning	Drilling machine, lathes
IT12, IT13, IT14	Metal forming processes	Presses
IT15	Die casting, stamping	Die casting machine, hammer machine
IT16	Sand casting	

Diameter		Val	ues	of t	olera	ince	in	mi	cro	ns				1. 1	(1 m	icron	0	.001	mm)
steps in									Т	oler	anc	e gr	ades						
mm		01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14*	15*	16*
To and inc	3	0.3	0.5	0.8	1.2	2	3	4	6	10	14	25	40	60	100	140	250	400	600
Over To and inc	3 6	0.4	0.6	1	1.5	2.5	. 4	5	8	12	18	·30	48	75	120	180	300	480	750
Over To and inc	6 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900
	10 18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270	430	700	1100
	18 30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330	520	840	1300
	30 50	0.6	1	1.5	2.5	4	7	11	16	25	39	60	110	160	250	390	620	1000	1600
Over 5 To and inc 5	50 80	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900
Over a To and inc 12	80 20	1	1.5	2.5	4	6	10	15	22	35	54	87	140	220	350	540	870	1400	2200
Over 12 To and inc 18		1.2	2	3.5	5	8	12	18	25	40	63	100	160	250	400	630	1000	1600	2500
Over 18 To and inc 25		2	3	4.5	7	10	14	20	29	46	72	115	185	290	460	720	1150	1850	2900
Over 25 To and inc 31	50 15	2.5	4	6	8	12	16	23	32	52	81	130	210	320	520	810	1300	2100	3200
Over 31 To and inc 40	15	3	5	7	9	13	18	25	36	57	89	140	230	360	570	890	1400	2300	3600
Over 40 To and inc 50		4	6	8	10	15	20	27	40	63	97	155	250	400	630	970	1150	2500	4000

FUNDAMENTAL TOLERANCES OF GRADES 01, 0 AND 1 TO 16

* Upto 1 mm, Grades 14 to 16 are not provided.

RANGE IN A GIVEN TOLERANCE GRADE

			()	values i	n micro	ns)				1
	Toleran	ces of	holes				Toleran	ices of	shafts	
Nominal sizes	H7	H8	H9	H10	H11	d 9	e8	f7	g 6	h6
From 1 Upto 3	+10 0	+14	+ 25	+ 40	+ 60	- 20 - 45	- 14 - 28	- 6 - 16	- 2 - 8	0 - 6
Over 3 Upto 6	+12	+18 0	+ 30	+ 45	+ 75 0	- 30 - 60	- 20 - 38	- 10 - 22	- 4 -12	0 - 8
Over 6 Upto 10	+15	+22 0	+ 36	+ 58	+ 90	- 40 - 75	- 25 - 47	- 13 - 28	- 5 -14	0 - 9
Over 10 Upto 18	+18 0	+27 0	+ 43	+ 70	+110 0	- 50 - 93	- 32 - 59	- 16 - 34	- 6 -17	0 -11
Over 18 Upto 30	+21	+33 0	+ 52	+ 84	+130 0	- 65 -117	- 40 - 73	- 20 - 41	- 7 -20	0 -13
Over 30 Upto 50	+25 0	+39 0	+ 62	+100 0	+160 0	-80 -142	- 50 - 89	- 25 - 50	- 9 -25	0 -16
Over 50 Upto 80	+30 0	+46	+ 76	+120 0	+190 0	-100 -174	- 60 -105	- 30 - 60	-10 -29	0 -19
Over 80 Upto 120	+35 0	+54	+ 87	+140 0	+220	-120 -207	- 72 -126	- 36 - 71	-12 -34	0 -22
Over 120 Upto 180	+40	+63	+100 / 0	+160	+250 0	-145 -245	-85 -148	- 43 - 83	-14 -39	0 -25
Over 180 Upto 250	+45	+72	+115	+185 0	+290	-170 -285	-100 -172	- 50 - 96	-15 -44	0 -29
Over 250 Upto 315	+52	+81	+130 0	+210	+320	-190 -320	-110 -191	- 56 -108	-17 -49	0 -32
Over 315 Upto 400	+57	+89 0	+140 0	+230	+360	-210 -350	-125 -214	- 62 -119	-18 -54	0 -35
Over 400 Upto 500	+63	+97 0	+155 0	+250 0	+400 0	-230 -385	-135 -232	- 68 -131	-20 -60	0 -40

TABLE 18-14(i) (Values in microns)

Note: Upto means including. Over means excluding.

	Tolerances of holes							rances	of sha	afts
Nominal sizes	D10	E 9	F 8	G 7	JS7	K 7	j6	k 6	n 6	р 6
From 1	+ 60	+ 39	+ 20	+ + 12	+ 5	0	+ 3	+ 6	+10+4	+ 12
Upto 3	+ 20	+ 14	+ 6	+ 2	- 5	-10	- 3	0		+ 6
Over 3	+ 78	+ 50	+ 28	+16	+ 6	+ 3	+ 4 - 4	+ 9	+16	+ 20
Upto 6	+ 30	+ 20	+ 10	+ 4	- 6	- 9		+ 1	+ 8	+ 12
Over 6	+ 98	+ 61	+ 35	+20	+ 7.5	+ 5	+ 4.5	+10	+19	+ 24
Upto 10	+ 40	+ 25	+ 13	+ 5	- 7.5	-10	- 4.5	+ 1	+10	+ 15
Over 10	+120	+ 75	+ 43	+24	+ 9	+ 6	+ 5.5	+12	+23	+ 29
Upto 18	+ 50	+ 32	+ 16	+ 6	- 9	-12	- 5.5	+ 1	+12	+ 18
Over 18	+149	+ 92	+ 53	+28	+10.5	+6	+ 6.5	+15	+28	+ 35
Upto 30	+ 65	+ 40	+ 20	+ 7	-10.5	-15	- 6.5	+ 2	+15	+ 22
Over 30	+180	+112	+ 64	+34	+12.5	+ 7	+ 8	+18	+33	+ 42
Upto 50	+ 80	+ 50	+ 25	+ 9	-12.5	-18	- 8	+ 2	+17	+ 26
Over 50	+220	+134	+ 76	+40	+15	+ 9	+ 9.5	+21	+39	+ 51 + 32
Upto 80	+100	+ 60	+ 30	+10	-15	-21	- 9.5	+ 2	+20	
Over 80	+260	+159	+ 90	+47	+17.5	+10	+11	+25 + 3	+45	+ 59
Upto 120	+120	+ 72	+ 36	+12	-17.5	-25	-11		+23	+ 37
Over 120	+305	+185	+106	+54	+ 2 0	+12	+12.5	+28	+52	+ 68
Upto 180	+145	+ 85	+ 43	+14	- 2 0	-28	-12.5	+ 3	+27	+ 43
Over 180	+355	+215	+122	+61	+ 2 3	+13	+14.5	+33	+60	+ 79
Upto 250	+170	+100	+ 50	+15	- 2 3	+33	-14.5	+ 4	+31	+ 50
Over 250	+400	+240	+135	+69	+ 2 6	+16	+16	+36	+66	+ 88
Upto 315	+190	+110	+ 55	+17	- 2 6	-36	-16	+ 4	+34	+ 56
Over 315	+440	+265	+151	+75	+28.5	+17	+18	+40	+73	+ 98
Upto 400	+210	+125	+ 69	+18	-28.5	-40	-18	+ 4	+37	+ 62
Over 400	+480	+290	+165	+83	+31.5	+18	+ 2 0	+45	+80	+108
Upto 500	+230	+135	+ 68	+20	-31.5	-45	- 2 0	+ 5	+40	+ 68

TABLE 18-14(ii) (Values in microns)

			()	alues in	n micro					
	Tolerand	ces of	holes				Toleran	ces of	shafts	
Nominal sizes	C11	N7	Ρ7	R 7	S 7	r 6	s 6	t6	u 6	u 6
From 1 Upto 3	+120 + 60	- 4 -14	- 6 -16	- 10 - 20	- 1 - 24	+ 16 + 10	+ 20 + 14	-	+ 24 + 10	+ 28 + 18
Over 3 Upto 6	+145 + 70	- 4 -16	- 8 -20	- 11 - 23	- 15 - 27	+ 23 + 15	+ 27 + 19	-	+ 31 + 23	+ 35 + 23
Over 6 Upto 10	+170 + 80	- 4 -19	- 9 -24	- 13 - 28	- 17 - 32	+ 28 + 19	+ 32 + 28	-	+ 37 + 28	+ 43 + 28
Over 10 Upto 18	+205 +95	- 5 -23	-11 -29	- 16 - 34	- 21 - 39	+ 34 + 23	+ 39 + 28	-	+ 44 + 33	+ 51 + 33
Over 18 Upto 30	+240 +110	- 7 -28	-14 -35	- 20 ⁻ - 41	- 27 - 48	+ 41 + 28	+ 48 + 35	+ 54 + 41	+ 61 + 41	+ 62 + 41
Over 30 Upto 40	+280 +120	- 8	-17	- 25	- 34	+ 50	+ 59	+ 64 + 48	+ 76 + 60	+ 85 + 60
Over 40 Upto 50	+290 +130	-33	-42	- 50	- 59	+ 34	+ 43	+ 70 + 54	+ 86 + 70	+ 95 + 70
Over 50 Upto 65	+330 +140	- 9	-21	- 30 - 60	- 42 - 72	+ 60 + 41	+ 72 + 53	+ 85 + 66	+106 + 87	+117 + 87
Over 65 Upto 80	+340 +150	-39	-51	- 32 - 62	- 48 - 78	+ 62 + 43	+ 78 + 59	+ 94 + 75	+121 +102	+132 +102
Over 80 Upto 100	+390 +170	-10	-24	- 38 - 73	- 58 - 93	+ 73 + 51	+ 93 + 71	+113 + 91	+146 +124	+159 +124
Over 100 Upto 120	+400 +180	-45	-59	- 41 - 76	- 66 -101	+ 76 + 54	+101 + 79	+126 +104	+166 +144	+175 +144
Over 120 Upto 140	+450+200	-12	-28	- 48 - 88	- 77 -117	+ 88 + 63	+117 + 92	+147 +122	+ 195 + 170	+230 +170
Over 140 Upto 180	+480 +210	-52	-68	- 50 - 93	- 85 -133	+ 93 + 65	+133 +100	+171 +134	+235 +190	+250 +190
Over 180 Upto 250	+570 +240	-14 -60	-33 -79	- 60 -113	-105 -169	+113 + 77	+169 +122	+225 +166	+330 +236	+330 +236
Over 250 Upto 315	+650 +300	-14 -66	-36 -88	- 74 -130	-138 -202	+130 + 94	+202 +158	+272 +218	+382 +350	
Over 315 Upto 400		-16 -73	-41 -98	- 87 -150	-169 -224	+150 +108	+244 +190	+330 +268	+471 +390	+492 +390
Over 400 Upto 500		-17 80	-45 -108	-103 -172	-209 -292	+172 +126	+292 +232	+400 +330	+580 +490	

TABLE 18-14(iii) (Values in microns

Representation of Tolerance

	Toleran	ces of	holes				Tolerar	ices_of	shafts	
Nominal sizes	H7	H8	H9	H10	H11	d9	e8	f7	g6	h6
From 1 Upto 3	+10 0	+14 0	+ 25 0	+ 40	+ 60	- 20 - 45	- 14 - 28	- 6 - 16	- 2 - 8	0 - 6
Over 3 Upto 6	+12 0	+18 0	+ 30 0	+ 45 0	+ 75 0	- 30 - 60	- 20 - 38	- 10 - 22	- 4 -12	0 - 8
Over 6 Upto 10	+15 0	+22 0	+ 36 0	+ 58 0	+ 90	- 40 - 75	- 25 - 47	- 13 - 28	- 5 -14	0 - 9
Over 10 Upto 18	+18 0	+27 0	+ 43	+ 70 0	+110 0	- 50 - 93	- 32 - 59	- 16 - 34	- 6 -17	0 -11
Over 18 Upto 30	+21	+33 0	+ 52 0	+ 84	+130 0	- 65 -117	- 40 - 73	- 20 - 41	- 7 -20	0 -13
Over 30 Upto 50	+25	+39 0	+ 62	+100 0	+160 0	-80 -142	- 50 - 89	- 25 - 50	- 9 -25	0 -16
Over 50 Upto 80	+30	+46 0	+ 76 0	+120 0	+190 0	-100 -174	- 60 -105	- 30 - 60	-10 -29	0 -19
0					. 000	100	70	20	10	0

H : lower deviation of hole is zero

Representation of Fit

μm

+350

Together (Letter & Grade) on both mating components decide quality of fit

Tolerance on Components

Estimate kind of fit

FITS APPLICATIONS

.

.

Interference fit

.

.

		Wheel steel tyres, bronze crowns on worm wheel
Shring fit	H8/u8	hubs, couplings etc
Heavy drive fit	H7/s6	
		Coupling of shaft ends, bearing bushing in hubs,
Press fit	H7/r6	valve seats, gear wheels
Medium press fit	H7/p6	

Transition fit

		gears and bearing bushes, shaft and wheel
Light press fit	H7/n6	assembly fixed by feather key.
		parts of machine tools that must be dismantled
		without damage e.g. gears belt pulleys, couplings,
Force fit	H7/m6	fit bolts, inner rring of ball bearings
		belt pulleys, brake pulleys, gears and couplings as
		well as inner rings of ball bearngs on shafts for
Push fit	H7/k6	average loading conditions
		parts which are frequently dismantled, but are
		secured by keys, e.g. pulleys, hand wheels,
		bushes, bearing shells, piston on piston rods,
Easy push fit	H7/j6	change gear trains

Clearance fit		
		sealing rings, bearing covers, milling cutters on
Precision sliding fit	H7/h6	milling mandrels
		sleeve shafts, clutches, movable gears in change
Close running fit	H7/g6	gear trains
		Sleeve bearings with high revolution, bearings on
Normal running fit	H7/f7	machine tool spindles
		Sleeve bearings with mediuam revolution, greease
		lubricated bearings of wheel boxes, gear sliding on
Easy running fit	H8/e8	shafts and sliding blocks
Loose running fit	H8/d9	Sleeve bearings with low revolution
Slack running fit	H8/c11	Oil seals with metal housings, multi-spline shafts
	H11/a11	Large clearance and widely used

FITS AND TOLERANCES

The components of the toleranced dimension shall be indicated in the following order:

- a) the basic size, and
- b) the tolerance symbol.

If, in addition to the symbols it is necessary to express the values of the deviations or the limits of size, the additional information shall be shown in brackets.

•If a dimension needs to be limited in one direction only, this should be indicated by adding "min" or "max" to the dimension.

•The upper deviation or the upper limit of size shall be written in the upper position and the lower deviation or the lower limit of size in the lower position, irrespective of whether a hole or a shaft is toleranced.

•The tolerance symbol for the hole shall be placed before that for the shaft or above it, the symbols being preceded by the basic size indicated once only.

Indication of Tolerances on Angular Dimensions

Fig. 8.1 Tappet in guide

Fig. 8.2 Flange on shaft

STUFFING BOX

Parts List

Part No.	Name	Mati.	Qty.
1	Gland	Brass	1
2	Nut, M12	MS	2
3	Stud	MS	2
4	Body	CI	1
5	Bush	Brass	1
5.6	Shaft	MS	1

Fig. 9.12 St

Fig. 9.13 Details of stuffing box

۵

Fig. 8.6 Cylinder liner in block